Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Vestnik Rossijskoj Voenno-Medicinskoj Akademii ; 24(3):593-604, 2022.
Article in Russian | Scopus | ID: covidwho-20238187

ABSTRACT

A new coronavirus infection (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) broke out at the end of 2019 in Wuhan (China). The disease has become a global pandemic and claimed more than 6 million lives after spreading rapidly around the world. Issues related to the complicated course of COVID-19 mechanisms continue to be the subject of active study. It is known that morbidity and mortality increase dramatically with increasing age and concomitant diseases, including obesity, diabetes, cancer, and cardiovascular diseases. Although most infected people recover, even young and otherwise healthy patients can get sick with this disease. In this regard, an urgent task is to search for specific genetic factors that can explain the predisposition of people to infection and the development of a severe COVID-19 form. Human genetic determinants can provide the scientific basis for disease prediction and the development of personalized therapies to counteract the epidemic. In addition, cases of repeated infection with SARS-CoV-2 are increasingly being registered, which occurs 1–6 months after initial infection on average and depends on the virus genome structure. Studies conducted on sequencing viral genomes have shown that some patients were re-infected with the same strain of coronavirus, while others were different. This, in turn, causes researchers concerns about the effectiveness of immunity after infection and vaccine reliability. The genetic characteristics of a person and a virus commonly determine the tendency for reinfection. It is difficult to determine the true COVID-19 reinfection prevalence, which is explained by the low detectability of asymptomatic reinfection and the fact that many patients with a mild course of the disease were not tested at an early stage of the pandemic. Therefore, the true prevalence of reinfection with COVID-19 does not reflect the current reality. There are many more cases of reinfection than are described in the literature. In this regard, the true contribution of a virus' genetic features to reinfection of COVID-19 can be determined only after population studies, and when developing immunization programs against a COVID-19, it is necessary to take into account the prevalence of reinfection in the population. The article can be used under the CC BY-NC-ND 4.0 license © Authors, 2022.

2.
Science ; 380(6645):564-564, 2023.
Article in English | Academic Search Complete | ID: covidwho-2321270

ABSTRACT

In January, a federal audit found that EcoHealth had misreported nearly $90,000 in expenses for several grants dating to 2014 and that NIH had erred by not justifying its termination (later changed to a suspension) of the 2019 grant. Three years after then-President Donald Trump pressured the U.S. National Institutes of Health (NIH) to shut down a research grant to a group studying how bat coronaviruses jump to people, the agency has restarted the award. [Extracted from the article] Copyright of Science is the property of American Association for the Advancement of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
mBio ; 14(3): e0025023, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2306588

ABSTRACT

Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.


Subject(s)
COVID-19 , RNA Viruses , Humans , RNA, Viral/genetics , Cohort Studies , COVID-19/genetics , SARS-CoV-2/genetics , Genome, Viral , RNA Viruses/genetics , Antiviral Agents
4.
Chinese Journal of Polymer Science (Springer Science & Business Media BV) ; 41(3):327-333, 2023.
Article in English | Academic Search Complete | ID: covidwho-2288932

ABSTRACT

At present, the coronavirus disease 2019 (COVID-19) pandemic is a global health crisis. Scientists all over the globe are urgently looking forward to an effective solution to prevent the spread of the epidemic and avoid more casualties at an early date. In this study, we establish an effective platform for the prevention of SARS-CoV-2 by combining the neutralization strategy and RNAi technology. To protect normal cells from infection, the customized cells are constructed to stably express viral antigenic receptor ACE2 on the cell membrane. These modified cells are used as bait for inducing the viral entry. The transcription and replication activities of viral genome are intercepted subsequently by the intracellular shRNAs, which are complementary to the viral gene fragments. A pseudotyped virus reconstructed from the HIV lentivirus is utilized as a virus model, by which we validate the feasibility and effectiveness of our strategy in vitro. Our work establishes an initial model and lays the foundation for future prevention and treatment of various RNA viruses. [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Polymer Science (Springer Science & Business Media B.V.) is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

5.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2163618

ABSTRACT

Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.


Subject(s)
COVID-19 , Influenza Vaccines , Orthomyxoviridae , Humans , Antiviral Agents , Defective Interfering Viruses , Defective Viruses/physiology , SARS-CoV-2 , Orthomyxoviridae/genetics , Virus Replication/genetics
6.
RNA ; 28(3): 277-289, 2022 03.
Article in English | MEDLINE | ID: covidwho-1592848

ABSTRACT

Coronavirus RNA-dependent RNA polymerases produce subgenomic RNAs (sgRNAs) that encode viral structural and accessory proteins. User-friendly bioinformatic tools to detect and quantify sgRNA production are urgently needed to study the growing number of next-generation sequencing (NGS) data of SARS-CoV-2. We introduced sgDI-tector to identify and quantify sgRNA in SARS-CoV-2 NGS data. sgDI-tector allowed detection of sgRNA without initial knowledge of the transcription-regulatory sequences. We produced NGS data and successfully detected the nested set of sgRNAs with the ranking M > ORF3a > N>ORF6 > ORF7a > ORF8 > S > E>ORF7b. We also compared the level of sgRNA production with other types of viral RNA products such as defective interfering viral genomes.


Subject(s)
Computational Biology/methods , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames
7.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1520752

ABSTRACT

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Subject(s)
Capsid Proteins/genetics , Defective Interfering Viruses/metabolism , Virus Replication/drug effects , Administration, Intranasal , Animals , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 , Capsid Proteins/metabolism , Cell Line , Defective Interfering Viruses/pathogenicity , Disease Models, Animal , Genome, Viral/genetics , Humans , Influenza, Human , Interferons/metabolism , Male , Mice , Mice, Inbred C57BL , Poliovirus/genetics , Poliovirus/metabolism , Respiratory Tract Infections/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
8.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1335229

ABSTRACT

Here, we report on the increasing frequency of the SARS-CoV-2 lineage A.27 in Germany during the first months of 2021. Genomic surveillance identified 710 A.27 genomes in Germany as of 2 May 2021, with a vast majority identified in laboratories from a single German state (Baden-Wuerttemberg, n = 572; 80.5%). Baden-Wuerttemberg is located near the border with France, from where most A.27 sequences were entered into public databases until May 2021. The first appearance of this lineage based on sequencing in a laboratory in Baden-Wuerttemberg can be dated to early January '21. From then on, the relative abundance of A.27 increased until the end of February but has since declined-meanwhile, the abundance of B.1.1.7 increased in the region. The A.27 lineage shows a mutational pattern typical of VOIs/VOCs, including an accumulation of amino acid substitutions in the Spike glycoprotein. Among those, L18F, L452R and N501Y are located in the epitope regions of the N-terminal- (NTD) or receptor binding domain (RBD) and have been suggested to result in immune escape and higher transmissibility. In addition, A.27 does not show the D614G mutation typical for all VOIs/VOCs from the B lineage. Overall, A.27 should continue to be monitored nationally and internationally, even though the observed trend in Germany was initially displaced by B.1.1.7 (Alpha), while now B.1.617.2 (Delta) is on the rise.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Amino Acid Substitution , COVID-19/epidemiology , France/epidemiology , Genome, Viral , Germany/epidemiology , Humans , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Adv Genet (Hoboken) ; 2(2): e10050, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1269110

ABSTRACT

The limited volume of COVID-19 data from Africa raises concerns for global genome research, which requires a diversity of genotypes for accurate disease prediction, including on the provenance of the new SARS-CoV-2 mutations. The Virus Outbreak Data Network (VODAN)-Africa studied the possibility of increasing the production of clinical data, finding concerns about data ownership, and the limited use of health data for quality treatment at point of care. To address this, VODAN Africa developed an architecture to record clinical health data and research data collected on the incidence of COVID-19, producing these as human- and machine-readable data objects in a distributed architecture of locally governed, linked, human- and machine-readable data. This architecture supports analytics at the point of care and-through data visiting, across facilities-for generic analytics. An algorithm was run across FAIR Data Points to visit the distributed data and produce aggregate findings. The FAIR data architecture is deployed in Uganda, Ethiopia, Liberia, Nigeria, Kenya, Somalia, Tanzania, Zimbabwe, and Tunisia.

10.
Wellcome Open Res ; 5: 184, 2020.
Article in English | MEDLINE | ID: covidwho-808195

ABSTRACT

Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.

11.
Virus Res ; 289: 198170, 2020 11.
Article in English | MEDLINE | ID: covidwho-793817

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China late in 2019. Nine months later (Sept. 23, 2020), the virus has infected > 31.6 million people around the world and caused > 971.000 (3.07 %) fatalities in 220 countries and territories. Research on the genetics of the SARS-CoV-2 genome, its mutants and their penetrance can aid future defense strategies. By analyzing sequence data deposited between December 2019 and end of May 2020, we have compared nucleotide sequences of 570 SARS-CoV-2 genomes from China, Europe, the US, and India to the sequence of the Wuhan isolate. During worldwide spreading among human populations, at least 10 distinct hotspot mutations had been selected and found in up to > 80 % of viral genomes. Many of these mutations led to amino acid exchanges in replication-relevant viral proteins. Mutations in the SARS-CoV-2 genome would also impinge upon the secondary structure of the viral RNA molecule and its repertoire of interactions with essential cellular and viral proteins. The increasing frequency of SARS-CoV-2 mutation hotspots might select for dangerous viral pathogens. Alternatively, in a 29.900 nucleotide-genome, there might be a limit to the number of mutable and selectable sites which, when exhausted, could prove disadvantageous to viral survival. The speed, at which novel SARS-CoV-2 mutants are selected and dispersed around the world, could pose problems for the development of vaccines and therapeutics.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genome, Viral , Mutation , Pandemics , Pneumonia, Viral/virology , RNA, Viral/genetics , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Biological Evolution , COVID-19 , China , Conserved Sequence , Coronavirus Infections/epidemiology , Europe , Germany , Global Health , Humans , India , Pneumonia, Viral/epidemiology , Russia , SARS-CoV-2 , Sequence Alignment , Sequence Homology , United States , Virus Replication
12.
J Immunol Methods ; 481-482: 112787, 2020.
Article in English | MEDLINE | ID: covidwho-127336

ABSTRACT

Alarms periodically emerge for viral pneumonia infections due to coronavirus. In all cases, these are zoonoses passing the barrier between species and infect humans. The legitimate concern of the international community is due to the fact that the new identified coronavirus, named SARS-CoV-2 (previously called 2019-nCoV), has a quite high mortality rate, around 2%, and a strong ability to spread, with an estimated reproduction number higher than 2. Even though all countries are doing their utmost to stop the pandemic, the only reliable solution to tackle the infection is the rapid development of a vaccine. For this purpose, the means of bioinformatics, applied in the context of reverse-vaccinology paradigm, can be of fundamental help to select the most promising peptides able to trigger an effective immune response. In this short report, using the concept of nullomer and introducing a distance from human self, we provide a list of peptides that could deserve experimental investigation in the view of a potential vaccine for SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , Computational Biology , Epitopes/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Genes, MHC Class I , Humans , Pandemics , Peptides/immunology , Pneumonia, Viral , SARS-CoV-2 , Software , Viral Proteins/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL